Research Brief: New Satellite Sensors for Wildfire Mapping and Monitoring

UNIversity FORmation Mission 1--microsatellite designed by Hokkaido University for wildfire management (photo:  Koji Nakau)

UNIversity FORmation Mission 1–microsatellite designed by Hokkaido University for wildfire management (photo: Koji Nakau)

Hokkaido University (HU) is one of the world leaders in developing new earth-observing space technology. Dr. Koji Nakau leads their wildfire remote sensing applications team. He’s working with various partners—including UAF—on new satellite-derived products delivered to wildland fire managers in Alaska and around the world.  They are especially excited about the May 24th (2014) launch of a rocket carrying ALOS-2 (Advanced Land Observing Satellite) which is also carrying a couple microsatellites with sensors specifically designed by his team to detect wildfire signatures. In addition to improving real-time operational support, satellite data is analyzed in support of wildfire propagation modeling, smoke transport, fuels estimates, and post-fire ecology.

Read About the New Satellites>>  |  Download Research Brief PDF (744 kb)

Advertisements

Webinar Summary: What do Forest Fires, Caribou, and Monster Truck Tires have in Common? by Matt Nolan

Dr. Matt  Nolan shared results from his recent airborne photogrammetry campaigns in Alaska, and related them to possible fire and forest management applications in a webinar on February 25, 2014.  There is now a 2-page Webinar Summary about the topic and you can also watch the recorded webinar (https://vimeo.com/87797023) on AFSC’s website.  Dr. Nolan is a Research Associate Professor at UAF’s Institute of Northern Engineering with degrees in geophysics and arctic and mechanical engineering. He’sNolan-Webinar-2014-THUMB_Page_1 been pioneering new high-tech uses of an old tool—the aerial photo.  With new advances in computer processing and display technologies, airborne Digital SLR Photogrammetry is an even more powerful tool for field sciences, especially in remote areas like Alaska. Compared to LiDAR (Light Detection and Ranging, or aerial 3D laser scanning), the low cost of DSLR photogrammetry makes it more affordable to make time-series of high-resolution maps, opening up  new possibilities for analyzing and understanding changes in the environment. Forest inventory, fire fuels assessments (like canopy height), snow depth, and post-burn vegetation recovery and monitoring are just a few examples of applications that could benefit from time-series of topographic measurements on an annual, monthly, or other repeating basis.

Dowload Webinar Summary <<LINK>>