Climate analogs to see the future today

The subject of a new study (and a recent AFSC webinar by Sean Parks of the USFS Rocky Mountain Research Station) introduces a novel way to look at fire regime changes through time over a landscape using the idea of “climate analogs”.  We’ve all seen maps showing future changes in temperature and precipitation based on climate projection models. Spatial analysis can locate a “future” climate analog for any pixel on a map using projections of variables like temperature, precipitation, or modeled evapotranspiration. Parks et al. 2016 provide a way to “look next door to see the future”, i.e. our pixel or region of interest, may be expected to show a fire return interval, burn severity, etc. similar to that now reflected in its analog which has those climate characteristics today.  If the average annual temperature in Fairbanks was 30⁰F in 2015, for example, we could map the nearest points that may have similar temperatures by 2085—possibly at higher elevations around Fairbanks. If a “path of least resistance” with respect to skirting areas that may have way different temperatures due to topographic features is added, you get a figure kind of like the one below from Yellowstone park (Dobrowski and Parks 2016). The authors have used the method to look at future availability of wildlife habitats, and to hypothesize fire regime characteristics of parks and wilderness areas in the mountain west.  Among their findings were thresholds for climate moisture deficit which seemed to make fire frequency jump up and other areas which seemed to indicate fuel limitations may lead to lower fire severity.  So far, the approach has not been tried in Alaska, but might provide an interesting comparison to vegetation and future fire modeling being done by SNAP.


From Dobrowski and Parks, 2016, Fig. 1: Climate trajectories are defined by a source pixel (start) with a given temperature under current conditions (1981–2010) and a destination pixel (end) with a similar temperature under future conditions (2071–2100). Curved path (2) minimizes traversing pixels with large differences in temperature.

Citation: Parks, S.A.; Miller, C.; Abatzoglou, J.T.; Holsinger, L.M.; Parisien, M-A.; Dobrowski, S.Z. How will climate change affect wildland fire severity in the western US? Environ. Res. Lett. 201611, 035002.