Fire’s Role in a Broadleaf Future for Alaska?

As climate warming brings more wildfire to the North, scientists and citizens wonder how the landscape will be transformed.  Will forests continue their 2000’s-era trend toward less spruce and more hardwoods, catalyzed by larger fires and more frequent burning?  If so, that might slow down the trend for larger and more intense fires. However, will hotter summers with more effective drying lead to increased fire re-entry into the early successional hardwoods, making them less strategic barriers for fire protection? A research team modeling the former question just unveiled an interactive web tool to model forest changes under various future climate scenarios (Feb. 1 webinar recording available HERE).  With the new web tool, funded by JFSP,  Paul Duffy and Courtney Schultz will be working with fire managers in Alaska to look at fire occurrence and cost in the future.  Try it for yourself at  http://uasnap.shinyapps.io/jfsp-v10/

video-only-site-roadsite-burnout-7
Photo by USFS, PNW (2004).

As for the second question–will it be harder for hardwoods to resist fire–a recent paper in Ecosphere (Barrett et al. 2016) is one of the first published studies to look for an answer.  AFSC highlights that work with a Research Brief this month: A Deeper Look at Drivers of Fire Activity, Re-burns, and Unburned Patches in Alaska’s Boreal Forest.  Check out all our Research Briefs in our web Library.

Citation: Barrett, K, T. Loboda, AD McGuire, H. Genet, E. Hoy, and E. Kasischke. 2016. Static and dynamic controls on fire activity at moderate spatial and temporal scales in the Alaskan boreal forest. Ecosphere 7(11):e01572. 10.1002/ecs2.1572

Can the 2015 Alaska fire season be attributed to warming climate?

card streeet smoke plume

Smoke plume from 2015 Card Street fire (Alaska Division of Forestry).

A collaboration between NOAA, UAF, UAA, NWS, AFSC and AICC Predictive Services has produced a new paper on attribution of extreme fire seasons to climate change. The report appears in the Bulletin of the American Meteorological Society (BAMS), “An Assessment of the Role of Anthropogenic Climate Change in the Alaska Fire Season of 2015,” announced at AGU last week.

Bottom line: Human-induced climate change may have increased the risk of a fire season of 2015 severity by 34%–60%.  (LINK:  Chapter 4 in  https://www.ametsoc.org/ams/index.cfm/publications/bulletin-of-the-american-meteorological-society-bams/explaining-extreme-events-from-a-climate-perspective/)

Climate analogs to see the future today

The subject of a new study (and a recent AFSC webinar by Sean Parks of the USFS Rocky Mountain Research Station) introduces a novel way to look at fire regime changes through time over a landscape using the idea of “climate analogs”.  We’ve all seen maps showing future changes in temperature and precipitation based on climate projection models. Spatial analysis can locate a “future” climate analog for any pixel on a map using projections of variables like temperature, precipitation, or modeled evapotranspiration. Parks et al. 2016 provide a way to “look next door to see the future”, i.e. our pixel or region of interest, may be expected to show a fire return interval, burn severity, etc. similar to that now reflected in its analog which has those climate characteristics today.  If the average annual temperature in Fairbanks was 30⁰F in 2015, for example, we could map the nearest points that may have similar temperatures by 2085—possibly at higher elevations around Fairbanks. If a “path of least resistance” with respect to skirting areas that may have way different temperatures due to topographic features is added, you get a figure kind of like the one below from Yellowstone park (Dobrowski and Parks 2016). The authors have used the method to look at future availability of wildlife habitats, and to hypothesize fire regime characteristics of parks and wilderness areas in the mountain west.  Among their findings were thresholds for climate moisture deficit which seemed to make fire frequency jump up and other areas which seemed to indicate fuel limitations may lead to lower fire severity.  So far, the approach has not been tried in Alaska, but might provide an interesting comparison to vegetation and future fire modeling being done by SNAP.

capturedobrowskiparksfig1

From Dobrowski and Parks, 2016, Fig. 1: Climate trajectories are defined by a source pixel (start) with a given temperature under current conditions (1981–2010) and a destination pixel (end) with a similar temperature under future conditions (2071–2100). Curved path (2) minimizes traversing pixels with large differences in temperature.

Citation: Parks, S.A.; Miller, C.; Abatzoglou, J.T.; Holsinger, L.M.; Parisien, M-A.; Dobrowski, S.Z. How will climate change affect wildland fire severity in the western US? Environ. Res. Lett. 201611, 035002. http://dx.doi.org/10.1088/1748-9326/11/3/035002

More fire–fewer firefighters?

Today’s science topic highlights a fire management conundrum:  While the number of acres burned in Alaska and most of the West is increasing, the number of wildland
firefighters available to suppress them is doing the opposite.  Conscoldtrail-sider the data published in Wildfire Today’s article last year  (Gabbert 2015).  The number of employees in the 5 major federal land management agencies who manage fires have all shrunk–by 6% at FWS to 18% at BLM to 33% at BIA.   Although these numbers are national, Alaska’s agencies have mirrored some of these reductions (and recall that large fire incidents tap the national pool of firefighters).  By some estimates the number of federally-employed firefighters is down by about 20% from 2011.

Boundary Fire study relates burn severity to permafrost degradation

The most important ecological effects of fire may not be evident for many years after burning.  Take permafrost, for example:   just-published research is revealing extensive thawing and drying of soils in the aftermath of the Boundary Fire in interior Alaska.  Brown et al. 2016 found almost all the severely burned plots in their study had thawed by 10 years after the 2004 fire.  Without permafrost the burned areas were better drained, leading to drier soils, and influencing vegetation succession.

dscf0838

Typical burn appearance after 3 years (R. Jandt)

Another interesting facet of their study was the array of remotely-sensed data that Brown and colleagues employed, including optical and infrared spectra (Landsat 7 & 8), radar (L-band Synthetic Aperture Radar, or ALOS-PALSAR), and topographic (Light Detection and Ranging–LiDAR) datasets. Infrared indices used in the study were strongly correlated with soil moisture–allowing researchers to map the distribution of permafrost and compare it to burn severity maps.

Citation:
Brown, D.R.N., Jorgenson, M.T., Kielland, Knut, Verbyla, D.L., Prakash, Anupma and J.C. Koch. 2016. Landscape effects of wildfire on permafrost distribution in interior Alaska derived from remote sensing.  Remote Sensing 8 (8): 654, doi:10.3390/rs8080654.

 

C.A.R.V.E. and the Carbon Detectives

How do you know whether forest fires or factories and diesel generators are responsible for Black Carbon or CO2 in the air or deposited in icefields?  An experiment called CARVE (Carbon in Arctic Reservoirs Vulnerability Experiment) led by Chip Miller of the NASA Jet Propulsion Laboratory was conducted in Alaska’s airspace and some results just published explain how the source can be identified.  The combustion of woody biomass (or more importantly in Alaska–layers of compacted dead moss and organic soil) liberates primarily carbon deposited since World War II into CO2.  That modern post-bomb carbon contains traces of radioactive  carbon (Δ14C) in contrast to fossil fuels, deposited in prehistoric times, which have none.

carve

CARVE:  Sherpa aircraft flew sensors over fires in Alaska in 2013 to measure atmospheric concentrations of gases.

 

 

 

 

During the CARVE experiment, Sherpa aircraft flew sensors to measure atmospheric concentrations of CH4, CO2, and CO and parameters that control gas emissions (i.e. soil moisture, freeze/thaw state, surface temperature). They directly flew over some fires (including fires near Fairbanks and Delta) to measure the “fingerprint” concentrations of isotopes released by typical boreal burning.  Mouteva et al. (2015) published findings that showed most of the C in the summer skies over Alaska in 2013 was indeed attributable to forest fires and the age of the biomass converted to black carbon averaged about 20 years (range 11-47 yrs).  The authors also explore using the carbon isotope “fingerprint” of fires to estimate the average depth of consumption–since Δ14C increases with depth from the surface moss to the mesic horizon.  Pooled results of radioactive isotope fractions yielded an average depth of burn of about 8 inches for the 2013 Alaska fires–a result that may vary depending on fuel conditions.  Burn severity, expressed as depth of consumption, is a hot topic among agencies and land managers because it drives ecological response to burning as well as vegetation changes which may come with the hypothesized climate-driven increased boreal burning.

Citation:  Mouteva, G. O., et al. (2015), Black carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soils, Global Biogeochem. Cycles: 29, doi:10.1002/2015GB005247.

 

 

Adam Young consults the crystal ball on future fire regime across Alaska

A paper just published by the indefatigable Adam Young, a PhD candidate at the University of Idaho, and colleagues pulls together a lot of information about climate, forest, tundra and fire to offer a glimpse of potential future fire regimes in different parts of Alaska.  By looking at fire occurrence at a multi-decadal time scale, the researchers drill down into how fire rotations are likely to respond to climate projections at a regional scale.

Young Fig 6 exerpt

Exerpt from Fig. 6, Young et al. 2016. Figures in the paper not only show the observed fire rotation for 19 subregions of Alaska (Figure A2 in supplement) with 60 years of fire occurrence data, but also project future rotations under various climate scenarios (in this case a mean of of 5 global climate models).

The use of advanced statistical models to build fire-landscape response models for boreal forest and tundra reaffirms prior findings of the sensitivity of fire regime to summer temperatures and moisture deficit. However, the effect is not uniform among regions: they identify a threshold at about 56⁰ F (30-yr mean temperature of the warmest month) and another threshold for annual precipitation where fire occurrence really seems to jump.  This latter finding accounts for results which project large increases in 30-year probability of burning for areas where these thresholds will be crossed in the next several decades.  For example, models project the Brooks Range foothills of the North Slope, Noatak tundra and the Y-K Delta may see increases in fire 4-20x greater than historical levels.  Some tundra areas are likely to experience fire frequency increase to levels not observed in the paleo record, spanning the past 6,000-35,000 years.  Across most of the boreal forest, fire rotation periods are projected to be less than 100 years by end of the 21st century.  This is useful information for natural resources management as well as fire protection agencies—a concise, well-researched, well-illustrated paper—put it on your summer reading list.

Young, A. M., Higuera, P. E., Duffy, P. A. and Hu, F. S. (2016), Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography 39: 1-12. http://dx.doi.org/10.1111/ecog.02205

Do bark beetle outbreaks really affect burning?

Capture-hansen2016fig2

 

It has long been assumed that bark beetle outbreaks on the Kenai lead to increased fire danger, even though beetle disturbance has been shown to have mixed effects on crown fire potential, fuel profiles and burn severity in the Rocky Mountains.  Winslow Hansen, doctoral candidate at the University of Wisconsin, recently published an analysis of beetle outbreaks and fire on the Kenai Peninsula between 2001-2014 (Hansen et al. 2016).  He looked at effects in pure white spruce stands–where duration of beetle attacks is longer and mortality greater–and in mixed white and black spruce stands common on the northern peninsula, where attacks are less severe.  His analysis indicates mixed effects:  severely damaged white spruce stands did not demonstrate increased fire occurrence (instead, % canopy cover appeared to drive likelihood of burning) while the mixed white/black spruce stands did show a positive correlation with beetle outbreaks and fire.  Winston explores the reasons for this in his relatively short article:  worth reading.  You may remember Winslow from his previous work on beetles/fire effects and property values on the Kenai (recorded MS Thesis defense) and climate effects on fire regime (recorded 2015 presentation).

Citation:  Hansen, W.D, F.S. Chapin III, H.T. Naughton, T.S. Rupp, and D. Verbyla. 2016. Forest-landscape structure mediates effects of a spruce bark beetle (Dendroctonus rufipennis) outbreak on subsequent likelihood of burning in Alaskan boreal forest.  Forest Ecology and Management 369: 38–46.

Fire and Carbon Stores: the Rest of the Story

Estimates of carbon released from combustion of vegetation and organic soil during wildfires have improved dramatically over the past decade.  Biomass inventory, fire effects and fire severity studies have contributed more accurate data to improve these models. (See Ottmar 2007, Brendan Rogers webinar 2015)  However, figuring out the net effect of all the various effects of fire, the recovery phase and warming climate on the carbon stored in Alaska’s forests and tundra is a lot more challenging!  You’d have to consider changes in burn extent and/or severity, increases in plant productivity in recovering burns, changes in species composition and what that means for productivity, changes in permafCaptureIEMrost distribution and soil C decomposition, methane emissions and carbon fluxes in lake systems and wetlands–etc.!  A team lead by Dr. Dave McGuire at UAF has taken on this modeling challenge by applying their Integrated Ecosystem Model (IEM) which includes modules for fire, permafrost, and carbon cycling. Dave recently presented an overview of their findings at an IARPC-WCT/AFSC joint webinar (presentation slides available HERE).  In a nutshell, they found: 1) tundra holds 2x the carbon that boreal forest does in the same area 2) there has been a net C loss from boreal land area of about 8 Tg/yr over the last 60 years, primarily driven by large fires during the 2000’s 3) arctic tundra and SE Alaska still act as C sinks, compensating for these losses so that overall, Alaska sequesters about 3.7 Tg/yr,  4) increases in fire extent predicted with with warming climate will release even more C, but longer growing seasons and increased plant growth (as much as 8-19% increased productivity throughoCaptureALFut the remainder of this century) with warmer climate and higher CO2 concentration in the atmosphere are estimated to offset these losses under most of the climate projection scenarios. Since this nutshell summary glosses over a lot, you should take a look at the slides and the SNAP projects page with information on scenarios and the individual models used.

Fuel Treatments Aid 2015 Firefighting Efforts in Alaska

A new report by USFWS Kenai Refuge fire staff (Nate Perrine) examines

Capture-cardst

areas where the 2015 Card Street fire intersected completed fuels treatments. He utilized IFTDSS (Interagency Fuels Treatment Decision Support System) modeling to analyze the treatment effect on fire behavior, and also documented post fire effects within the treated areas. This well-illustrated discussion includes recommendations for future treatments and analyses–a must-read for fire fuels specialists in Alaska! Click below to download a pdf.

The Effects and Use of Fuel Treatments during the Card Street Fire